Nanotech

nanotech
Block-Scaffolds for Bone Regeneration using Nanoclay-Polycaprolactone Scaffolds with Supplements (RFT-533)

Scientists at NDSU have developed a flexible, modular, bone scaffold for filling large bone gaps and accelerating bone growth with various additives, such as nutrients, cytokines, therapeutics and minerals incorporated into the scaffold.  The scaffold is made of a clay and a polymer.

Silicon Quantum Dots can Be Manufactured within Targeted Size Range, Can be Modified to Provide Sensor Functions and to Prevent Clumping and Clinging (RFT-501)

Scientists at NDSU have developed a method to produce functionalized silicon quantum dots (SQDs) with sensor capabilities.

Roll-to-Roll Synthesis of Silicon Thin Films from Liquid Silanes (RFT-447)

Silicon thin films are fundamental in solar and microelectronic industries, and are presently obtained using expensive low-pressure plasma enhanced chemical vapor deposition (PECVD) using gaseous silanes despite of its low precursor utilization efficiency. Instability and low vapor-pressure of liquid hydrosilanes have limited their use in the semiconductor industries for longtime. Researchers at NDSU have developed a process to synthesis silicon thin films from liquid hydrosilane (Si6H12) at ambient pressure in a roll-to-roll method using atmospheric pressure aerosol assisted chemical vapor deposition (AA-APCVD) that has higher deposition rates compared to the state-of-the-art PECVD.  

Vegetable Oil-Based Polymers for Nanoparticle Surface Modification (RFT-413)

The extremely high surface area of nanoparticles provides many advantages over conventional particles with dimensions in the micron scale. For a variety of applications, it is necessary to suspend the nanoparticles in a liquid medium. Researchers at NDSU have developed a new plant-oil-based polymer technology focused on the application of nanoparticle suspension in water.

Electrospinning Process for Continuous High-Volume Silicon Micro- and Nano-Wire Production (RFT-311)

Scientists at North Dakota State University (NDSU) have developed a process for continuous high-volume production of silicon micro- and nano-wires based on electrospinning. The technology is based on the ability to use liquid silane as a starting material, so the length of the wires is essentially unlimited. The wires can be produced with a variety of polymers, metal particles, and silane variations to generate a range of properties and capabilities. Potential applications include composite materials, electronic devices, sensors, photodetectors, batteries, ultracapacitors, and photosensitive substrates.