Nanotech

Block-Scaffolds for Bone Regeneration using Nanoclay-Polycaprolactone Scaffolds with Supplements (RFT-533)
Scientists at NDSU have developed a flexible, modular, bone scaffold for filling large bone gaps and accelerating bone growth with various additives, such as nutrients, cytokines, therapeutics and minerals incorporated into the scaffold. The scaffold is made of a clay and a polymer.
Roll-to-Roll Synthesis of Silicon Thin Films from Liquid Silanes (RFT-447)
Silicon thin films are fundamental in solar and microelectronic industries and are presently obtained using expensive low-pressure plasma-enhanced chemical vapor deposition (PECVD) using gaseous silanes despite its low precursor utilization efficiency. Instability and low vapor pressure of liquid hydrosilanes have limited their use in the semiconductor industries for a long time. Researchers at NDSU have developed a process to synthesis silicon thin films from liquid hydrosilane (Si6H12) at ambient pressure in a roll-to-roll method using atmospheric pressure aerosol assisted chemical vapor deposition (AA-APCVD) that has higher deposition rates compared to the state-of-the-art PECVD.
Vegetable Oil-Based Polymers for Nanoparticle Surface Modification (RFT-413)
The extremely high surface area of nanoparticles provides many advantages over conventional particles with dimensions in the micron scale. For a variety of applications, it is necessary to suspend the nanoparticles in a liquid medium. Researchers at NDSU have developed a new plant-oil-based polymer technology focused on the application of nanoparticle suspension in water.
Electrospinning Process for Continuous High-Volume Silicon Micro- and Nano-Wire Production (RFT-311)
Scientists at NDSU have developed a process for continuous high-volume production of silicon micro-and nano-wires based on electrospinning. The technology is based on the ability to use liquid silane as a starting material, so the length of the wires is essentially unlimited. The wires can be produced with a variety of polymers, metal particles, and silane variations to generate a range of properties and capabilities. Potential applications include composite materials, electronic devices, sensors, photodetectors, batteries, ultracapacitors, and photosensitive substrates.