Paints & Coatings

paints and coatings

Paints and Coatings by Application

All Available Paints and Coatings

Lignin-Based Thermosets (RFT-542)

NDSU Researchers have developed a process to modify lignin, so as to produce acetoacetylated (AA-lignin) and methacrylated (MA-lignin) derivatives that are well suited for production of thermosets. This technology enables modification of full sized lignin molecules, and depolymerized lignin subunits, by attaching reactive groups to some or all of the hydroxy groups. The derivatized lignin has lower viscosity than (for example) kraft lignin. This makes it easy to handle and to control crosslinking reactions and can be readily crosslinked to form thermosets through several different mechanisms, including reaction with amines, polyisocyanates, or melamine-formaldehyde resins. 

Photoinitiators that Trigger Extremely Rapid and Efficient Polymer Synthesis Using UV or Visible Light (RFT-530)

NDSU researchers have developed a range of Type I, Type II, and acidic photoinitiators, which provide polymerization of polyacrylate with good efficiency at low concentrations. The synthesis of photoinitiators is efficient using routine chemistry, and their structures are easily manipulated to tune for low energy (including visible) light wavelengths. These photoinitiators are each triggered by a very narrow and easily defined wavelength, making timing of polymerization easy to control (and avoiding inadvertent triggering of the reaction). The photoinitiators may be produced from either bio-based or petroleum-based starting materials, including such readily available materials as vanillin.

Photodegradable Polymers Enable Recovery of High Value Components from Electronics and Composites (RFT-529)

Only about 10% of post-consumer plastic is recycled in the U.S., leading to waste of plastic and valuable materials embedded in plastic. NDSU researchers have developed a technology to make many plastics photodedgradable, enabling recovery of materials from plastics while broadly enhancing plastics recycling.  With respect to recovery of embedded materials, electronic devices and carbon fiber composites being two examples.  More than 30% of carbon fiber ends up discarded.  Electronics have an even worse recycling story.  Almost 90% of electronic waste is disposed without recycling, even though it is a gold mine … one ton of circuit boards contains 40 – 800 times more gold than a ton of ore.  There is also a tremendous amount of copper, silver, and palladium that is discarded rather than recovered.  The NDSU technology enables recovery of these valuable components, which is accomplished by including built-in photocleavable units into the plastic polymers. The resulting photodegradable polymers can be designed for degradation with specific wavelengths of UV and/or visible light by selecting the appropriate photocleavable unit(s).

Novel Non-Isocyanate Siloxane-Polyurethane Coatings (RFT-517)

Glycidyl carbamate (GC) functional resins are used due to their high mechanical strength, toughness and abrasion and chemical resistance associated with polyurethanes as well as the convenience of epoxy-amine chemistry. Webster et al. have combined these resins with polydimethylsiloxane to develop self-stratified coatings that yield coatings hav ing low surface energy as well as reduce the hazards of isocyanates. 

Styrenated Soybean Oil Derivatives as a Replacement for Naphthenic and Aromatic Rubber Processing Oils (RFT-512/513)

Scientists at NDSU have developed styrenated soybean oil derivatives that can be used as a direct replacement for naphthenic and aromatic oils in rubber processing. A particularly promising derivative is soybean oil (SBO) modified with polystyrene (SBO-PS). Tests using this bio-based rubber processing oil produced rubber with improved wet and ice traction with preserved low rolling resistance, while also providing better tensile properties, and similar durometer hardness and tear resistance, as compared with naphthenic and aromatic oils. These results demonstrate that non-toxic soybean oil derivatives can provide high performing alternatives to the more toxic naphthenic and aromatic oils that are currently used for rubber processing. See for example the figure below, comparing naphthenic oil (NO), SBO-PS, and a 50/50 mixture of the two. 

Smart Coating for Corrosion Mitigation in Metallic Structures (RFT-509)

Though corrosion is well understood in terms of mechanisms and methods of control, it still accounts for a notable number of failures in pipelines buried or on the ground. This is due to a large number of potential complications such as varying soil properties along the pipeline and over time, local cracks on the soft coating surface, separation of coating from the pipeline surface, and corrosive environments. To address this, Azarmi et al developed smart coatings which can both prevent and monitor corrosion of steel through the use of a hard coating deposited by thermal spraying with embedded Fiber Bragg Grating (FBG) sensors.

Epoxidized Sucrose Esters of Fatty Acids (RFT-314, 422, 459, 488, 489, 502)

Scientists at North Dakota State University have developed a method to produce epoxidized sucrose esters of fatty acids (ESEFAs).  These are macromolecules with a rigid sucrose core from which 8 arms extend, the arms derived from fatty acids.  ESEFAs have extraordinary versatility with respect to potential uses and manufacturing processes.   

Polymers Derived from Bio-Diesel Waste for Road Dust Control (RFT-499) 

Scientists at NDSU have developed a new material that can be applied to gravel roads for suppression of road dust. The material is made from the huge waste stream that is generated during the production of biodiesel which is primarily glycerol and biodegradable or bio-derived fatty acid esters. The new material is made up of mono- and di-gylcerides that are synthesized from a combination of waste glycerol and soybean oil triglycerides. Upon application to the road surface, the glycerides undergo crosslinking reactions to form a larger, more stable molecule. 

Environmentally Friendly Coating Resists Icing and Marine Fouling (RFT-496)

Scientists at NDSU have developed a polyurethane coating that confers both anti-icing and anti-fouling capabilities. Potential applications include marine and freshwater anti-fouling coatings, and a wide range of coatings where resistance to icing has value.  The coating uses an amphiphilic compound, hydrophilic polyethylene glycol (PEG) and hydrophobic polydimethyl siloxane (PDMS), to provide excellent performance in addition to environmental benefits. With respect to anti-fouling coatings, this polyurethane provides superior fouling release and durability compared with silicone elastomers.

Epoxidized Sucrose Esters of Fatty Acids (RFT-314, 422, 459, 488, 489, 502)

Scientists at North Dakota State University have developed a method to produce epoxidized sucrose esters of fatty acids (ESEFAs).  These are macromolecules with a rigid sucrose core from which 8 arms extend, the arms derived from fatty acids.  ESEFAs have extraordinary versatility with respect to potential uses and manufacturing processes. 

Acrylic Monomers Derived from Plant Oils – Synthesis and Use in High Value Polymers (RFT-462)

Scientists at NDSU have developed a one-step method to convert plant oil into acrylic monomers that substitute for petroleum-based monomers in the production of acrylic polymers. This method can use essentially any plant oil, animal fat, or other fatty esters as the raw material. The output is a combination of (meth) acrylic fatty monomers that can be used directly in the production of latexes, adhesives, surfactants, sizing agents, resins, binders, and other products that utilize acrylic polymers.

Bio-Based Highly (Meth)Acrylated Resins and Thermosets (RFT-459 and RFT-489)

Thermosetting polymers and composites are widely used in industry due to their many desirable characteristics, such as low density and cost, dimensional stability, and good mechanical properties. However, most of these resins are petroleum-based raising environmental concerns and potentially increasing cost and regulations. Thus, there is a demand for novel resins and composites synthesized from renewable materials, such as plant oils. Webster et al. answer that need with a novel bio-based resin containing a large number of unsaturated vinyl groups. Specifically, they have developed a polyfunctional bio-based oligomer synthesized from an epoxidized sucrose fatty acid ester resin and an ethylenically unsaturated ester (RFT-459). More recent modifications by the group (RFT-489) have added an acid anhydride leading to a vinyl functionalized resin with a lower viscosity. The resins can then be cured using free radical initiators to form highly crosslinked thermosets with numerous applications. These systems use significantly lower amounts of styrene than petrochemical vinyl ester resins. 

Plant Oil-Based Reactive Diluents for Coating and Composite Applications (RFT-438)

NDSU scientists have developed plant oil-based reactive diluents for coating and composite applications that possess both low viscosity and high reactive functionality. With these improved characteristics, these plant oil-based materials eliminate or reduce the need to be blended with petrochemicals thereby increasing the bio-based content of the product, which is environmentally more desirable.

Novel Polymers and Polymeric Materials Based on the Renewable Compounds, Eugenol and Iso-Eugenol (RFT-423)

Due to the finite supply of fossil resources and the growing environmental concern, there is a major need for chemicals and materials derived from renewable resources. Aromatic building blocks, such as phenols, are particularly important and can be derived from renewable sources. Chisholm et al are the first to convert eugenol and iso-eugenol into vinyl ether monomers via reaction of the hydroxyl group. The result is soluble, processable linear polymers that retain the allyl group for crosslinking reactions and incorporation of other functional groups. 

Epoxidized Sucrose Esters of Fatty Acids (RFT-314, 422, 459, 488, 489, 502)

Scientists at North Dakota State University have developed a method to produce epoxidized sucrose esters of fatty acids (ESEFAs).  These are macromolecules with a rigid sucrose core from which 8 arms extend, the arms derived from fatty acids.  ESEFAs have extraordinary versatility with respect to potential uses and manufacturing processes.

Vegetable Oil-Based Polymers for Nanoparticle Surface Modification (RFT-413)

The extremely high surface area of nanoparticles provides many advantages over conventional particles with dimensions in the micron scale. For a variety of applications, it is necessary to suspend the nanoparticles in a liquid medium. Researchers at NDSU have developed a new plant-oil-based polymer technology focused on the application of nanoparticle suspension in water.

Amphiphilic Polyurethanes, Cosmetics, and Surfactants, Having Anti-Fouling/Anti-Biofilm Properties (RFT-380)

Scientists at NDSU have developed a graft co-polymer that confers amphiphilic properties to many materials, including polyurethanes, cosmetics, and surfactants. In the case of polyurethanes, this technology enables inclusion of resistance to biofouling and biofilm formation to be incorporated into the polyurethane structure.

Bio-Based Toughening Agent for UV-Curable Coatings and Thermoset Polymers (RFT-365)

Scientists working at NDSU have developed branched and hyperbranched oligomers derived from a combination of soybean and cashew nutshell oils (CNSL). These oligomers can be either UV-cured (for coatings) or thermally cured (to produce thermoset polymers). Coatings incorporating this hyperbranched material had improved adhesion and impact resistance, because the coatings were both strong and flexible. This material can be used in anti-corrosion and coatings and sealants, composites, inks, and adhesives, as well as directly in thermoset polymers.  These oligomers impart improved material properties compared to current bio-based materials, and in some cases exhibit properties superior to even their petroleum-based counterparts.

Polymers From Plant Oil Exhibit Increased Crosslink Density, Superior Properties (RFT-318)

This proprietary technology platform involves the conversion of plant oil triglycerides to polymerizable monomers that are subsequently used to produce a wide variety of bio-based polymers, tailored for specific applications in multiple industries. There are four major attributes of the proprietary polymerization process that set this technology apart from all other previously developed plant oil-based technologies developed to date. These key features also allow major material performance advantages that enable this renewable polymer technology to successfully compete with petroleum-based polymer materials.

Epoxidized Sucrose Esters of Fatty Acids (RFT-314, 422, 459, 488, 489, 502)

Scientists at North Dakota State University have developed a method to produce epoxidized sucrose esters of fatty acids (ESEFAs).  These are macromolecules with a rigid sucrose core from which 8 arms extend, the arms derived from fatty acids.  ESEFAs have extraordinary versatility with respect to potential uses and manufacturing processes.

Novel Acetoacetoxy and Enamine Compounds and Coatings Therefrom (RFT-310)

Researchers in the NDSU Department of Coatings and Polymeric Materials (CPM) have discovered enamine resins which are the reaction products of an acetoacetatylated resin, and a C1-C20 alkyl amine or a mixture of C1-C20 alkyl amines. The acetoacetylated resin is the reaction product of a polyol having 4 or more hydroxyl groups; and at least one acetoacetate. The invention also relates to an acetoacetylated resin which is the reaction product of a polyol having 4 or more hydroxyl groups and at least one acetoacetate, where a portion of the hydroxyl groups of the polyol are replaced by acetoacetate groups and the remaining hydroxyl groups are replaced by a saturated monofunctional carboxylic acid ester, unsaturated monofunctional carboxylic acid ester, or a mixture thereof; as well as to enamine resins prepared from these acetoacetylated resins.

Anti-Microbial Coatings for Medical and Underwater Biofouling Applications (RFT-179, 214, 260)

Scientists at North Dakota State University have developed a method to confer dual-action and broad-spectrum (gram +, gram -, and yeast) anti-microbial properties into polymers and coatings. The anti-microbial components are quaternary ammonium salts (QAS) and silver. The QAS component is attached to polysiloxane backbone – it may be strongly attached to provide a contact-active anti-microbial, or may be gradually released and leachable. Silver may also be integrated, and the NDSU technology enables silver to be efficiently incorporated just into the outer portion of a surface by dipping into an appropriate silver solution. This means the silver need not be included throughout a polymer or coating layer, but instead can be positioned right at the surface where essentially all the silver is available, and provides a rapid anti-microbial effect once the surface is hydrated.  The resulting materials include both a rapidly acting soluble anti-microbial component, and a longer lasting contact-active component to kill microbes that make direct contact with the material.

UV-Curable Low Surface Energy Coatings for Fouling Release and Anti-Graffiti Paints (RFT-254)

A new type of UV-curable PDMS coating was formulated and characterized in this invention. Preliminary investigations have shown that the surface is hydrophobic and films are softer than that obtained from unmodified polyester. The basis of this invention is in the synthesis of novel unsaturated polyester compositions containing poly-dimethyl-siloxane (PDMS) by mixing these polyesters with co-reactants and photoinitiators, and curing the compounds using either visible or UV light to form coatings having low surface energy. Applications include marine, packaging materials, protective wood coatings, anti-graffiti coatings, easy clean coatings and release coatings. The uniqueness and importance of this invention pertains to its novel siloxane-modied unsaturated polyesters, UV curable technology (so no oxygen inhibition), low siloxane (cost effective), and solvent free nature.

Anti-Microbial Coatings to Prevent and Treat Infection at Indwelling or Implanted Medical Device Sites (RFT-232)

Scientists at North Dakota State University have developed a polymer that can be incorporated into medical device materials and / or coatings, which enables local delivery of fluoroquinolone (FQ) antibiotics directly to the site of an indwelling or implanted medical device. The antibiotic is gradually released, providing immediate and ongoing anti-bacterial protection, (up to about 70 to 100 days).  The technology is expected to be especially useful as a way to reduce infections that accompany inserted or implanted medical devices: It delivers antibiotic directly to the area at high risk of infection; it delivers antibiotic immediately so that infections are stopped early; and it allows for a smaller total dose with minimal systemic exposure so that many or most side effects of systemic delivery should be dramatically reduced.

Siloxane-Polyurethane Coatings for Anti-Graffiti & Marine Antifouling Applications (RFT-231)

This invention pertains to novel siloxane-urethane coatings that were developed from unique single-end-functional siloxane polymers. These reaction siloxanes are incorporated into polyurethane coatings and result in coatings having low surface energy but good adhesion and mechanical properties.

Modified Glycidyl Carbamate Resins Exhibiting Superior Mechanical Properties (RFT-226)

This invention pertains to novel glycidyl carbamate resins that have been modified with alkyl or ether alkyl groups. These resins have improved properties such as lower viscosity, which makes them good candidates for commercialization in the paint industry. In particular, it has potential for application as a coating on aircrafts.

Sol-Gel Hybrid Coatings for Wide Range of Industrial Applications (RFT-225/240)

This invention pertains to the preparation of two-component polyurethane coating formulation comprising: an epoxy functional binder, and a blended curing component (having one sol-gel and one amine cross-linker.

Novel Polyurethane/Epoxy Hybrid Coatings (RFT-219)

This invention involves the preparation of a novel coating composition comprising a glycidyl carbamate functional resin, an aromatic epoxy resin, and a polyamine cross-linker. This coating formulation with the aromatic epoxy resin has improved corrosion resistance over coatings that do not contain the aromatic epoxy resin.

Anti-Microbial Coatings for Medical and Underwater Biofouling Applications (RFT-179, 214, 260)

Scientists at North Dakota State University have developed a method to confer dual-action and broad-spectrum (gram +, gram -, and yeast) anti-microbial properties into polymers and coatings. The anti-microbial components are quaternary ammonium salts (QAS) and silver. The QAS component is attached to polysiloxane backbone – it may be strongly attached to provide a contact-active anti-microbial, or may be gradually released and leachable. Silver may also be integrated, and the NDSU technology enables silver to be efficiently incorporated just into the outer portion of a surface by dipping into an appropriate silver solution. This means the silver need not be included throughout a polymer or coating layer, but instead can be positioned right at the surface where essentially all the silver is available, and provides a rapid anti-microbial effect once the surface is hydrated.  The resulting materials include both a rapidly acting soluble anti-microbial component, and a longer lasting contact-active component to kill microbes that make direct contact with the material.

"Carrier Gas" Sensitizers for Improved Laser Ablation Performance of Coating Films (RFT-178)

NDSU inventors have developed polymer films and additives that can be used in polymer films such as polyol photosensitizers, carrier gas UV laser ablation sensitizers and other additives that can be used in preparation of such carrier films.

Foul Release & Anti-Graffiti Paints with Phase Separation Properties (RFT-158)

This invention pertains to novel coating compositions that spontaneously phase separate to form uniform micro-domains on the coating surface, providing a multiphase topographical surface structure with textured surface that inhibits adhesion.

VOC-Free Waterborne Polyurethane Epoxide Resin and Crosslinker for Producing Tough and Flexible Coatings (RFT-154)

Scientists at North Dakota State University have developed a polyfunctional waterborne Glycidyl Carbonate (GC) resin, comprising oligomers that provide polyurethane properties with epoxide reactivity.  These compounds can be dispersed in water to form a dispersion containing no volatile organic solvent. 

Radiation Curable Sensitizers for Improved Laser Ablation Performance (RFT-153)

These inventions pertain to unsaturated polyester polymer compositions containing monomer molecules that sensitize the resulting polymer coating/film to ablation (i.e., removal of film material) by exposure to laser radiation. This technology is of potential value to parties in the semi-conductor and electronic manufacturing industries.

Novel Environment-Friendly Coatings for Marine Applications (RFT-133)

Proprietary and novel, silicone-based compounds (and methods for synthesis), some of which incorporate tethered biocide moieties (for marine applications), have been developed that can be used in coating formulations to prevent or reduce fouling by marine life and related substances on ship surfaces.

Magnesium Rich Coatings and Coating Systems(RFT-118/139)

This technology package consists of two different disclosures. One is a protective primer coating for two different aluminum alloys used in the construction of aircraft. The second is the application and optimization of that coating to structures of different alloys such as aircraft skin, rivets and struts. This technology protects aluminum from corrosion while eliminating toxic and carcinogenic materials such as chromium, that are currently used for corrosion protection.

Multi-Use Aminofunctional Alkoxy Polysiloxanes (RFT-71)

Linear and cyclic polysiloxanes functionalized with amine moieties have been synthesized utilizing aminoalcohols. The reaction is cost effective and a one-pot process with minimal purification of end product required. A diverse and versatile array of amino-silicone products are possible due to the variety of aminoalcohols commercially available.