Biology & Medicine

biology and medicine
Low-Cost, Disposable Device for Manufacture Car T-Cells for Cancer Therapy (RFT-538)

Scientists at NDSU have developed a new device for a scalable, biomanufacturing platform for the production of CAR-modified T-cells while eliminating on-target/off-tumor toxicity and decreasing the current production cost by 500 times (per treatment).  The technology relates to a device to produce modified T-cells comprising a first chamber for proliferating a population of T-cells and a second chamber for modifying the T-cells to express a desired T-cell receptor antigen.  The modified CAR T-cells can be used to treat cancer. 

Block-Scaffolds for Bone Regeneration using Nanoclay-Polycaprolactone Scaffolds with Supplements (RFT-533) 

Scientists at NDSU have developed a flexible, modular, bone scaffold for filling large bone gaps and accelerating bone growth with various additives, such as nutrients, cytokines, therapeutics and minerals incorporated into the scaffold.  The scaffold is made of a clay and a polymer.

Devices and Methods for Producing Synthetic Silk with Superior Characteristics (RFT-505)

Scientists at NDSU have developed a device and methods to produce spider silk that has the ability to produce silk similar to the silk produced by a spider. Our device mimics the pH and ionic gradients found in the natural gland., but also pulls the fiber from the device as opposed to extruding it via pushing.  This replicates native shear forces that are important for proper alignment of silk proteins. The result is a solid silk fiber that integrates the natural elements of fiber production (i.e. pressure, pH, and ionic gradients) to more accurately replicate the spider's ability to produce silk. Additionally, application of an electric field to the microfluidic device is a unique combination of microfuidic spinning and electrospinning to create a better fiber.

Stem Cell Mobilization Boosted 10X to 100X in People with Inadequate Response to Stem Cell Mobilizing Drugs (RFT-495)

Scientists at NDSU have developed a method to increase the efficacy of certain stem cell mobilizing drugs, including G-CSF and AMD3100. The method involves blocking the leptin receptor concurrent with administration of these drugs. In experimental studies, this strategy increased mobilization of the currently available mobilizing agents two- to five-fold higher than that observed with the agent alone, accounting for an overall mobilizing increase of ten- to one hundred-fold above baseline, depending on the agent used and treatment regimen. This technology has promise to improve outcomes for individuals with diabetes, and others whose stem cell mobilization is less than desired when taking the drugs described above.

Method for Improving the Quality and Quantity of Offspring in Mammals (RFT-494)

Scientists at NDSU have developed a method for predicting and/or confirming the success of pregnancy and/or litter size in mammals as well as devices for field testing of mammal samples for pregnancy success and reproduction prosperity (fecundity).  Measuring hematocrit levels or blood oxygen saturation near the time of insemination of a mammal can indicate the likelihood of a successful pregnancy and also predict litter size.  These methods can also be used to confirm a successful pregnancy sooner than other methods.  

Targeted Delivery and Rapid Release of Anti-Cancer Drugs in Tumors (RFT-470)

NDSU Scientists have developed a liposome-based delivery method with potential to reduce chemotherapy side effects while maintaining or even increasing cancer drug efficacy. The liposome is stabilized in the bloodstream using polyethylene glycol (PEG) and remains stable in the vicinity of healthy cells. However, upon arrival at a tumor the liposome rapidly disintegrates, releasing its contents to be taken up by tumor cells. This disintegration is triggered by conditions found in the tumor extracellular matrix (ECM), specifically the reducing conditions and the presence of Matrix Metalloproteinase 9 (MMP-9). As a result, these liposomes can carry drugs and imaging agents to tumors, releasing them so that a high concentration is available for rapid uptake into tumor cells, and reducing the amount of time these agents spend in the circulatory system or in the vicinity of healthy cells. A reduction in tumor growth was observed using this technology to deliver drugs in a mouse model of pancreatic cancer.

Monoclonal Antibody Against the Receptor for Advanced Glycation Endproducts (mRAGE) (RFT-432)

Scientists at NDSU have developed a monoclonal antibody that inhibits activation of the receptor for advanced glycation end products (RAGE). The antibody binds the V-domain to block activation of RAGE by its ligands. This domain is capable of binding to multiple structurally and functionally diverse ligands, all of which trigger signal transduction by RAGE’s cytosolic domain, and results in sustained inflammation that is associated with diabetes, cancers, Alzheimer’s, multiple sclerosis, and other diseases associated with chronic inflammation. As a result, the anti-RAGE monoclonal antibodies have potential to treat a wide variety of diseases.

Anti-RAGE Monoclonal for Research Use (RFT-432b)

This technology is a monoclonal antibody recognizing the V domain of the receptor for advanced glycation endproducts (RAGE).  RAGE is emerging as a biomarker in many human diseases such as diabetes, cancer and Alzheimer's disease.  In animal models, antibodies against RAGE have shown to reduce RAGE deleterious signaling.  RAGE is a cell-surface receptor that is activated by several ligands.  RAGE is therefore a suitable target for monoclonal antibodies.  We have generated monoclonal antibodies with the aim of blocking RAGE/ligand interaction and decreasing RAGE deleterious effects in several human diseases.  

Improved Ankle Replacement Device and Method (RFT-427)

NDSU engineers have developed an improved design and material for Total Ankle Replacements (TARs) that features an inverted design, in which the concave portion of the joint is on the bottom, and the convex on the top. This inverted design and the mode of assembly and implantation offers several benefits to surgeons and patients.

Novel PEGylated Compounds and Process for Making Antifouling/Biocompatible Materials (RFT-380)

Surfaces having non-fouling characteristics are of great interest for the development of advanced materials in many different applications. In medical device applications, protein attachment can cause any number of unwanted immune reactions when exogenous materials are implanted into biological systems. Materials developed with polyethylene glycols, often referred to as PEGylated materials, are of great interest due to their protein resistance and nontoxic properties.

One of the most widely used biomaterials is Polyurethane, due to its biocompatibility and its mechanical properties. Researchers at NDSU have developed a new class of PEGylated polyurethane materials using a novel process which is much more effective than traditional procedures. The resulting compounds are novel siloxane-PEG copolymers having terminal amine functionality and a backbone of siloxane having a varied number of pendant hydrophilic PEG chains. The low surface energy siloxane can aid in bringing PEG chains to the surface, and the terminal amine functionality can be bound into the polyurethane by reaction with isocyanate. Therefore, the surface of the material will be amphiphilic while the underlying polyurethane bulk will give toughness to the system. This approach allows for precise control over the number of hydrophobic PEG chains, siloxane and PEG chain lengths, and terminal amine functionality.

Linear Glycidyl Carbamate (GC) Resins for Highly Flexible Coatings (RFT-271)

Scientists at North Dakota State University have invented a Low-VOC, chromate-free, solventborne, low viscosity, highly flexible coating resin system. This resin system has the functionality of an epoxy resin while providing the performance of a polyurethane coating without exposing the end-user to isocyanates. When crosslinked with amines, these GC coatings have excellent adhesion, hardness, solvent resistance, gloss, and flexibility on cold-rolled steel and aluminum substrates. This polymer technology was specifically developed to be used to obtain highly flexible coatings while maintaining good solvent and chemical resistance.

Drug Delivery Vehicle for Treatment of Glaucoma and Other Eye Diseases (RFT-263)

Scientists at NDSU (in collaboration with University of Central Florida) have developed a potential ophthalmic drug delivery vehicle for treatment of glaucoma and other ocular diseases. The method uses functionalized cerium oxide nanoparticles (nanoceria), which can be combined with small molecule active ingredients to form a complex that facilitates higher efficiency delivery of drugs into the eye. This technology may provide an alternative to injections for delivering medicines into the eye.

The mechanism of improved drug delivery is thought to be the longer residence time on the eye surface, combined with sustained release that will be promoted using nanoceria. Together, these features are expected to provide significantly enhanced delivery of active ingredients to their site of action. Additionally, a fluorophore can be attached to nanoceria, to enable the tracking of the nanoparticles.

Anti-Microbial Coatings to Prevent and Treat Infection at Indwelling or Implanted Medical Device Sites (RFT-232)

Scientists at North Dakota State University have developed a polymer that can be incorporated into medical device materials and / or coatings, which enables local delivery of fluoroquinolone (FQ) antibiotics directly to the site of an indwelling or implanted medical device. The antibiotic is gradually released, providing immediate and ongoing anti-bacterial protection, (up to about 70 to 100 days).  The technology is expected to be especially useful as a way to reduce infections that accompany inserted or implanted medical devices: It delivers antibiotic directly to the area at high risk of infection; it delivers antibiotic immediately so that infections are stopped early; and it allows for a smaller total dose with minimal systemic exposure so that many or most side effects of systemic delivery should be dramatically reduced.  

Anti-Microbial Coatings for Medical and Underwater Biofouling Applications (RFT-179, 214, 260)

Scientists at North Dakota State University have developed a method to confer dual-action and broad-spectrum (gram +, gram -, and yeast) anti-microbial properties into polymers and coatings. The anti-microbial components are quaternary ammonium salts (QAS) and silver. The QAS component is attached to polysiloxane backbone – it may be strongly attached to provide a contact-active anti-microbial, or may be gradually released and leachable. Silver may also be integrated, and the NDSU technology enables silver to be efficiently incorporated just into the outer portion of a surface by dipping into an appropriate silver solution. This means the silver need not be included throughout a polymer or coating layer, but instead can be positioned right at the surface where essentially all the silver is available, and provides a rapid anti-microbial effect once the surface is hydrated.  The resulting materials include both a rapidly acting soluble anti-microbial component, and a longer lasting contact-active component to kill microbes that make direct contact with the material.  

Novel Chemotherapeutic Agents for Anti-Tumor and Anti-Cancer Drugs (RFT-72)

This invention relates to novel, substituted (functionalized) polysiloxane compositions (and methods for synthesis of same) that may be useful as antineoplastics (chemotherapeutics) or other therapeutic agents. Since compositions of this type can transverse cellular membranes, they may also serve as delivery vehicles for other agents with biological activities in both animals and plants (e.g., drugs, herbicides, fungicides, anti-microbials, etc.).

Prophylactic, Therapeutic, and Diagnostic Remedy for Treatment of Colibacillosis Infection (RFT-21)

Scientists at North Dakota State University have cloned and sequenced the iss (increased serum survival) gene from virulent avian Escherichia coli strains and expressed its encoded ISS polypeptide sequence. This has enabled them to conduct studies in understanding the gene’s potential and devise strategies to detect and control the colibacillosis infection that the gene is believed to cause.

This invention pertains to the application of this study in formulating DNA vaccines and immunogenic compositions for providing adequate prophylactic, therapeutic and diagnostic remedies against the colibacillosis infection in humans and avian organisms.